Search results for "Thermoplastic matrices"

showing 2 items of 2 documents

Conifer Needles as Thermoplastic Composite Fillers: Structure and Properties

2016

This study describes the properties of thermoplastic polymer composites based on polyethylene (of low and high density) and ethylene-propylene copolymers using various types of conifer needles (pine, spruce, fir, and cedar) as fillers. For the needles, thermogravimetric analysis (TGA) and TGA/Fourier transform infrared spectroscopy (TGA/FTIR) were performed to investigate their structures and thermal resistance, as required for the composite processing methods. Moreover, structural differences were studied for the analyzed fillers and composite materials (FTIR). The results were compared with the values obtained for composites with conifer wood flour. Composites with conifer needles (pine) …

0106 biological sciencesThermogravimetric analysisEnvironmental EngineeringMaterials scienceAbsorption of waterThermal resistancelcsh:BiotechnologyComposite numberBioengineeringConifer needlesMechanical properties02 engineering and technology01 natural sciencesStructure propertieschemistry.chemical_compound010608 biotechnologylcsh:TP248.13-248.65Fourier transform infrared spectroscopyComposite materialAbsorption (electromagnetic radiation)Waste Management and DisposalThermoplastic matricesBiocompositesfungifood and beveragesWood flourPolyethylene021001 nanoscience & nanotechnologychemistry0210 nano-technologyBioResources
researchProduct

Conifer needles as thermoplastic composite fillers: structure and properties

2016

This study describes the properties of thermoplastic polymer composites based on polyethylene (of low and high density) and ethylene-propylene copolymers using various types of conifer needles (pine, spruce, fir, and cedar) as fillers. For the needles, thermogravimetric analysis (TGA) and TGA/Fourier transform infrared spectroscopy (TGA/FTIR) were performed to investigate their structures and thermal resistance, as required for the composite processing methods. Moreover, structural differences were studied for the analyzed fillers and composite materials (FTIR). The results were compared with the values obtained for composites with conifer wood flour. Composites with conifer needles (pine) …

biocompositesthermoplastic matricesstructure propertiesmechanical propertiesconifer needlesBioResources
researchProduct